
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Nuva Labs

Collaborative Audit Prepared For: Nuva Labs
Lead Security Expert(s): defsec

Kirkeelee
Date Audited: November 21 - December 5, 2025

1

https://github.com/defsec
https://github.com/Kirkeelee

Introduction
NUVA unlocks global access to the world’s best real-world assets (RWAs). With no
minimums and no lockups, users of NUVA earn yield from institutional�grade RWAs and
have the ability to user their tokens freely across DeFi. NUVA was co-created by
Animoca Brands and NU Blockchain Technologies, and is stewarded by the NUVA
Foundation for progressive decentralization. Learn more at NUVA.finance.

Scope
Repository: ProvLabs/nuva-cosmos-contracts

Audited Commit: 76ec0b36a276540a626973ec7c5243852a4d0749

Final Commit: 001d23527c8d29b05f0b91d49cc96c21577ab13e

Files:

• src/bin/schema.rs

• src/contract.rs

• src/helpers.rs

• src/lib.rs

• src/msg.rs

• src/state.rs

Repository: ProvLabs/nuva-evm-contracts

Audited Commit: 9da04e4841fab051e5c338ff5ddef831fa7488c6

Final Commit: f4f53b2f1a2434cad5f9572c17ad6e6619eca34b

Files:

• contracts/CustomToken.sol

• contracts/DepositorFactory.sol

• contracts/Depositor.sol

• contracts/TokenFactory.sol

• contracts/WithdrawalFactory.sol

• contracts/Withdrawal.sol

Repository: ProvLabs/vault

Audited Commit: 5e6a36f859a09c3c240f38bf2a3b09b454608e47

2

https://nuva.finance/

Final Commit: 7fa6c5a16ae4cfe8599281b5eefbe8c1daa66fa9

Files:

• interest/interest.go

• keeper/abci.go

• keeper/genesis.go

• keeper/keeper.go

• keeper/msg_server.go

• keeper/payout.go

• keeper/query_server.go

• keeper/queue.go

• keeper/reconcile.go

• keeper/state.go

• keeper/valuation_engine.go

• keeper/vault.go

• module.go

• queue/payout_timeout.go

• queue/pending_swap_out.go

• types/codec.go

• types/genesis.go

• types/keys.go

• types/msgs.go

• types/payout.go

• types/vault.go

• utils/accounts.go

• utils/math.go

• utils/query/query.go

• utils/shares.go

• utils/slices.go

• utils/tools.go

3

Findings
Each issue has an assigned severity:

• High issues are directly exploitable security vulnerabilities that need to be fixed.

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

Issues Found

High Medium Low/Info

1 12 23

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0 0 0

4

IssueH-1: TokenFactory transfer/allowancefunctions
are non-functional [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/41

Summary
The TokenFactory contract contains five token utility functions (safeTransferToken(), saf
eTransferFromToken(), safeIncreaseAllowance(), safeDecreaseAllowance(), and forceApp
roveToken()) that are fundamentally broken. These functions operate on the factory
contract's own token balances and allowances rather than the caller's, making them
completely non-functional for any practical use case.

Vulnerability Detail
the TokenFactory contract implements several ERC20 token utility functions that appear
to be intended for user convenience. However, these functions have a critical design
flaw:

1. safeTransferToken() - Calls IERC20(token).safeTransfer() which attempts to
transfer from the factory's balance, not the caller's

2. safeIncreaseAllowance() - Increases the factory's allowance to a spender, not the
caller's allowance

3. safeDecreaseAllowance() - Decreases the factory's allowance, not the caller's

4. forceApproveToken() - Sets the factory's approval, not the caller's

The factory contract is not designed to hold tokens or manage allowances. It's purely a
deployment contract for creating new CustomToken instances. Therefore:

• The factory's token balance is always 0 (no mechanism exists to send tokens to it)

• The factory's allowances are meaningless (it never needs to approve spenders)

• Users calling these functions expecting to manage their own tokens will experience
transaction failures or no-ops

The only function that could theoretically work is safeTransferFromToken(), but it
requires the caller to have pre-approved the factory contract, which makes no sense in
the context of a token factory.

Impact
• Users calling safeTransferToken() expecting to transfer their tokens will fail with
”insufficient balance” or the transaction will silently do nothing.

5

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/41

Code Snippet
TokenFactory.sol:60-103

/**
* @notice Safely transfers tokens from the sender to the specified address.
* @param token The address of the token to transfer.
* @param to The address to which the tokens will be transferred.
* @param amount The amount of tokens to transfer.
*/
function safeTransferToken(address token, address to, uint256 amount) external {

IERC20(token).safeTransfer(to, amount);
// � Transfers from factory's balance (always 0)
// Should be: IERC20(token).safeTransferFrom(msg.sender, to, amount);

}

/**
* @notice Safely transfers tokens from the specified address to the specified

address.↪→

* @param token The address of the token to transfer.
* @param from The address from which the tokens will be transferred.
* @param to The address to which the tokens will be transferred.
* @param amount The amount of tokens to transfer.
*/
function safeTransferFromToken(address token, address from, address to, uint256

amount) external {↪→

IERC20(token).safeTransferFrom(from, to, amount);
// � Requires 'from' to have approved factory contract (why would they?)

}

/**
* @notice Safely increases the allowance for a spender to transfer tokens on

behalf of the sender.↪→

* @param token The address of the token to transfer.
* @param spender The address of the spender.
* @param addedValue The amount of tokens to add to the allowance.
*/
function safeIncreaseAllowance(address token, address spender, uint256 addedValue)

external {↪→

IERC20(token).safeIncreaseAllowance(spender, addedValue);
// � Increases factory's allowance, not caller's allowance

}

/**
* @notice Safely decreases the allowance for a spender to transfer tokens on

behalf of the sender.↪→

* @param token The address of the token to transfer.
* @param spender The address of the spender.
* @param subtractedValue The amount of tokens to subtract from the allowance.
*/

6

function safeDecreaseAllowance(address token, address spender, uint256
subtractedValue) external {↪→

IERC20(token).safeDecreaseAllowance(spender, subtractedValue);
// � Decreases factory's allowance, not caller's allowance

}

/**
* @notice Forces the approval of a spender to transfer tokens on behalf of the

sender.↪→

* @param token The address of the token to transfer.
* @param spender The address of the spender.
* @param amount The amount of tokens to approve.
*/
function forceApproveToken(address token, address spender, uint256 amount) external

{↪→

IERC20(token).forceApprove(spender, amount);
// � Approves from factory's perspective, not caller's

}

Tool Used
Manual Review

Recommendation
Consider removing all non-functional functions.

Discussion
scirner22

Corrective action here should be to totally remove these functions - they are unused.

defsec

Fix is confirmed on the https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f5
3b2f1a2434cad5f9572c17ad6e6619eca34b.

7

https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b
https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b

IssueM-1: Missingaccesscontrol on factorycontract
creation functions [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/40

Summary
The three factory contracts (DepositorFactory, WithdrawalFactory, and TokenFactory) all
lack proper access control on their respective creation functions (createDepositor(), cre
ateWithdrawal(), and createToken()).

Vulnerability Detail
All three factory contracts inherit from OpenZeppelin's Ownable contract but fail to
implement the onlyOwnermodifier on their critical creation functions:

1. DepositorFactory.createDepositor()

• Anyone can create depositor clones with arbitrary AML signer addresses

• No validation that the caller is authorized to create depositors

• The attacker controls the _amlSignerAddress parameter during initialization

2. WithdrawalFactory.createWithdrawal()

• Anyone can create withdrawal clones with arbitrary AML signers and burn user
addresses

• Both _amlSignerAddress and _burnUser parameters can be attacker-controlled

• No authorization check before contract deployment

3. TokenFactory.createToken()

• Anyone can create unlimited custom ERC20 tokens

• No restrictions on token names, symbols, or creation frequency

• Causes unbounded growth of the allTokens array

The root cause is that these functions are marked as external without any access
control modifiers, despite the factories inheriting from Ownable.

Impact
• Attackers create malicious depositors with their own AML signers, bypassing
compliance checks to steal user deposits.

8

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/40

• Rogue depositors for popular token pairs trick users into depositing funds that are
then stolen.

Tool Used
Manual Review

Recommendation
Add the onlyOwnermodifier to all factory creation functions to restrict access to owner.

Discussion
scirner22

Thank you. This will be corrected.

defsec

Fix is confirmed on the https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f5
3b2f1a2434cad5f9572c17ad6e6619eca34b.

9

https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b
https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b

Issue M-2: No mechanism to recover accumulated
dust [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/43

Summary
The contract accumulates ”dust” (small residual token amounts from rounding during
partial burns) in its internal storage but provides no administrative function to withdraw
these tokens. The contract includes tracking and query functionality for dust but
completely lacks any execute message to recover it, resulting in tokens becoming
permanently locked in the contract as dust accumulates over time.

Vulnerability Detail
The vault proxy contract is designed to handle cross-chain token bridging through a
receipt system. When burning receipts, users can specify a burn_amount that is less than
the full receipt.coin.amount, creating ”dust” that represents the difference.

The contract never imports or uses BankMsg, CosmosMsg, or any token transfer
functionality except through the vault module burn operation. There is literally no code
path to move tokens from the contract to an external address.

Impact
No recovery mechanism means permanent loss of protocol funds.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/mai
n/nuva-cosmos-contracts/src/contract.rs#L217

Tool Used
Manual Review

Recommendation
Implement a WithdrawDust execute message that allows the bridge_admin to recover
accumulated dust and send it to a specified recipient address.

10

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/43
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-cosmos-contracts/src/contract.rs#L217
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-cosmos-contracts/src/contract.rs#L217

Discussion
scirner22

Our plan was to add that functionality and migrate the contract at some point in time
when it was needed. Right now it's not clear what we would want to do with the dust and
based on expected value it would require 10 million swap-ins in order to accumulate $5
dollars of value in dust.

Are there downsides to this approach?

defsec

Thanks for the explanation. I agree that the expected dust value is low in the short term.
Migrations introduce operational overhead however It should be fine.

defsec

Marked as a fixed with migration.

scirner22

@defsec it seems this is the last outstanding issue on the dashboard? Are we in
agreeance that at some point a legal decision will be made on what we're allowed to do
with this dust and at that point we will implement a fix and migrate any instantiated
contracts. Until then we're fine with letting the dust accumulate.

defsec

Hi @scirner22 , agreed, thank you!

11

IssueM-3: AML signature lacks chain id binding [RE-
SOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/51

Summary
The AML message hash in the Withdrawal contract does not include block.chainid,
allowing AML signatures to be replayed across different chains. While address(this) is
included (as _destinationAddress), the missing chain ID creates a cross-chain replay
vulnerability.

Vulnerability Detail
The getMessageHash function in Withdrawal.sol creates a hash from:

function getMessageHash(
address sender,
uint256 _amount,
address _destinationAddress, // @audit This is address(this)
uint256 _deadline

) private view returns (bytes32) {
return

keccak256(
abi.encodePacked(

sender,
address(shareToken),
paymentToken,
_amount,
_destinationAddress, // @audit address(this) IS included
_deadline
// @audit block.chainid is MISSING

)
);

}

Impact
AML signatures can be replayed on different chains.

12

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/51

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/mai
n/nuva-evm-contracts/contracts/Withdrawal.sol#L348

Tool Used
Manual Review

Recommendation
Include block.chainid in the message hash:

function getMessageHash(
address sender,
uint256 _amount,
address _destinationAddress,
uint256 _deadline

) private view returns (bytes32) {
return

keccak256(
abi.encodePacked(

block.chainid,
sender,
address(shareToken),
paymentToken,
_amount,
_destinationAddress,
_deadline

)
);

}

Alternative: Use EIP-712 Standard

For better security and standardization, consider using EIP-712 typed data signing:

bytes32 DOMAIN_SEPARATOR = keccak256(
abi.encode(

keccak256("EIP712Domain(string name,string version,uint256 chainId,address
verifyingContract)"),↪→

keccak256("Withdrawal"),
keccak256("1"),
block.chainid,
address(this)

)
);

13

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-evm-contracts/contracts/Withdrawal.sol#L348
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-evm-contracts/contracts/Withdrawal.sol#L348

function getMessageHash(...) private view returns (bytes32) {
return keccak256(

abi.encodePacked(
"\x19\x01", // EIP-712 prefix
DOMAIN_SEPARATOR,
keccak256(abi.encode(

keccak256("Withdraw(address sender,address shareToken,address
paymentToken,uint256 amount,address destination,uint256
deadline)"),

↪→

↪→

sender,
address(shareToken),
paymentToken,
_amount,
_destinationAddress,
_deadline

))
)

);
}

Discussion
scirner22

Great suggestion!

We shall add address(this) and block.chainid to all aml checks.

scirner22

@defsec do you agree that with the EIP-712 addition the following should suffice?

bytes32 DOMAIN_SEPARATOR = keccak256(
abi.encode(

keccak256("EIP712Domain(string name,string version,uint256 chainId,address
verifyingContract)"),↪→

keccak256("Withdrawal"),
keccak256("1"),
block.chainid,
address(this)

)
);

function getMessageHash(...) private view returns (bytes32) {
return keccak256(

abi.encodePacked(
"\x19\x01", // EIP-712 prefix
DOMAIN_SEPARATOR,
keccak256(abi.encode(

14

keccak256("Withdraw(address sender,uint256 amount,uint256
deadline)"),↪→

sender,
_amount,
_deadline

))
)

);
}

scirner22

The thought being that shareToken and paymentToken are superfluous once we include
the verifyingContract address (address(this)).

defsec

Hi @scirner22 , Have a great day!

Yes, including block.chainid and address(this) in the DOMAIN_SEPARATOR does bind the
signature to the specific chain and contract, so from that perspective it’s sufficient for
preventing cross-chain and cross-contract replay.

However, note one thing:

Your updated typed struct:

keccak256("Withdraw(address sender,uint256 amount,uint256 deadline)")

no longer includes shareToken, paymentToken, or destinationAddress (which in your
current implementation is address(this)). If those fields were intentionally part of the
authorization scope before, removing them changes what the signer is attesting to.

So the EIP-712 setup is correct from a chain-binding standpoint, but you should verify
whether those omitted fields are still required for signature integrity.

defsec

Oh I see, sorry missed last message. Are we expecting any different payment token on
our end?

scirner22

No, the shareToken and paymentToken are set during contract initialization and cannot
change. They were only being used as a way to prevent replay across different
Withdrawal contracts, but with address(this) and block.chainid it seems like we are
better covered.

defsec

Got it, than that makes sense! I was thinking about multiple token deployments If we
need to offchain tracking. However, address(this) covers that

defsec

15

Fix is confirmed on the https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f5
3b2f1a2434cad5f9572c17ad6e6619eca34b.

16

https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b
https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b

Issue M-4: Griefing attack via residual dust and in-
correct initial mint condition [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/52

Summary
The vault has a bug in how it calculates shares for the ”first” depositor. It checks if the
vault has zero assets to decide if it is empty. However, if a user withdraws all their funds,
small rounding errors (”dust”) can leave a tiny amount of assets behind while the total
shares go to zero. This causes the next depositor to be treated incorrectly, resulting in
them receiving far fewer shares than they should.

Vulnerability Detail
The vault employs two distinct formulas for share calculation:

Initial Mint: Used when the vault is empty. It sets the initial exchange rate using a fixed
scalar (ShareScalar = 1,000,000). Formula: Shares = Deposit * 1,000,000

Subsequent Mint: Used for later deposits. It includes Virtual Shares and Virtual Assets
to mitigate inflation attacks. Formula: Shares = Deposit * (TotalShares + 1,000,000) /
(TotalAssets + 1)

The vulnerability exists in the condition used to select the formula: if totalAssets.IsZer
o() { ... }

An attacker can exploit this by depositing into a fresh vault and then redeeming 100% of
their shares. Due to floor arithmetic in the redemption formula (Payout = floor(Shares *
TotalAssets / TotalShares)), the payout may be slightly less than the total assets held if
the vault has accrued any value or simply due to integer division properties. For example,
if the vault holds 101 assets and the attacker owns 100% of the shares, the payout might
be 100.

This leaves the vault in a state where TotalShares is 0 but TotalAssets is 1 (the residual
dust). When a new victim deposits 100 units, the condition totalAssets.IsZero() evaluates
to false because of the dust. The system falls back to the Subsequent Mint logic: Shares
= 100 * (0 + 1,000,000) / (1 + 1), which simplifies to 100 * 1,000,000 / 2, resulting in
50,000,000 shares.

Since TotalShares is 0, the vault is effectively empty or reset, and the user should trigger
the Initial Mint logic, receiving 100,000,000 shares. Instead, the victim receives 50% of
the expected shares. While they technically own 100% of the shares (and thus 100% of
the assets), the exchange rate is permanently halved (500,000 shares/asset instead of
1,000,000).

17

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/52

Impact
The first depositor after a vault reset receives a significantly worse exchange rate than
intended, constituting a griefing attack. The vault's exchange rate is permanently
deviated from the intended ShareScalar, causing state corruption.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/utils/shares.go#L58-L68

Tool Used
Manual Review

Recommendation
Ideally both totalShares and totalAssets should be checked to see if it is the first
deposit.

Discussion
nullpointer0x00

I believe this one would not be possible to execute, see:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/48
allowbreak #issuecomment-3571775660 ...

Kirkeelee

@nullpointer0x00 Yes, it is invalid if direct transfers are impossible. Closing it.

Kirkeelee

@nullpointer0x00 re-opened the issue as ”dust” left behind can cause the same effect as
a donation in an empty vault.

18

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/utils/shares.go#L58-L68
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/utils/shares.go#L58-L68
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/48\##issuecomment-3571775660
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/48\##issuecomment-3571775660

Issue M-5: Unpausing vault does not re-enable in-
terest accrual period [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/57

Summary
The UnpauseVault function does not reset PeriodStart or PeriodTimeout when unpausing
a vault. This causes interest to be calculated for the entire duration from the old PeriodS
tart to the current block time, including the paused period.

Vulnerability Detail
hen a vault is paused, reconcileVaultInterest returns early (no-op) and PeriodStart/Per
iodTimeout remain at their old values. When the vault is unpaused, UnpauseVault sets Pau
sed = false but does NOT reset PeriodStart or PeriodTimeout.

The next time reconcileVaultInterest is called (e.g., on SwapIn), it checks if currentBlock
Time > vault.PeriodStart (old timestamp). If true, it calls PerformVaultInterestTransfer,
which calculates periodDuration = currentBlockTime - vault.PeriodStart. This
duration includes the entire paused period, causing interest to be incorrectly calculated
for time when the vault was paused.

Impact
Interest is calculated for the entire paused period, leading to significant over-accrual for
long pauses.

Code Snippet
UnpauseVault Missing Period Reset (vault/keeper/msg_server.go:497-532):

func (k msgServer) UnpauseVault(goCtx context.Context, msg
*types.MsgUnpauseVaultRequest) (*types.MsgUnpauseVaultResponse, error) {↪→

ctx := sdk.UnwrapSDKContext(goCtx)

vaultAddr := sdk.MustAccAddressFromBech32(msg.VaultAddress)
vault, err := k.GetVault(ctx, vaultAddr)
// ... error handling ...

vault.PausedBalance = sdk.Coin{}
vault.Paused = false
vault.PausedReason = ""

19

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/57

// Missing: vault.PeriodStart = ctx.BlockTime().Unix()
// Missing: vault.PeriodTimeout = 0
if err := k.SetVaultAccount(ctx, vault); err != nil {

return nil, fmt.Errorf("failed to set vault account: %w", err)
}

// ... rest of function ...
}

Interest Calculation Including Paused Period (vault/keeper/reconcile.go:90-130):

func (k *Keeper) PerformVaultInterestTransfer(ctx sdk.Context, vault
*types.VaultAccount) error {↪→

currentBlockTime := ctx.BlockTime().Unix()

if currentBlockTime <= vault.PeriodStart {
return nil

}

// periodDuration includes the paused period
periodDuration := currentBlockTime - vault.PeriodStart

// ...
interestEarned, err := interest.CalculateInterestEarned(principal,

vault.CurrentInterestRate, periodDuration)↪→

// ...
}

Tool Used
Manual Review

Recommendation
Consider resetting the interest accrual period after unpausing.

Discussion
nullpointer0x00

This one is the highest on my list to solve. In the mean time, if we want to pause a vault
for a long period of time that we do not want to pay interest for, we will have to manually
set the interest to 0.0 then pause it. We can do that as a multi msg tx. Then do the
reverse on unpause. I'm happy you found this.

defsec

20

Fixed with https://github.com/ProvLabs/vault/pull/139/files.

21

https://github.com/ProvLabs/vault/pull/139/files

Issue M-6: Critical logic error in _doDeposit allows
infinitebridgemintingvia self-transfer [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/59

Summary
The _doDeposit function transfers the deposited stablecoins to the _destinationAddress
specified by the caller. By setting this address to their own wallet, a user can perform a
self-transfer that emits a valid Deposit event without locking any funds. This allows an
attacker to trick the off-chain bridge into minting Nuva Tokens (shares) while retaining
their original stablecoins.

Vulnerability Detail
The _doDeposit function takes the _destinationAddress input and uses it as the target
for the ERC20 transfer of the deposit token.

function _doDeposit(uint256 _amount, address _destinationAddress) private {
if (_amount == 0) {

revert InvalidAmount();
}
if (_destinationAddress == address(0)) {

revert InvalidAddress("destination");
}

depositToken.safeTransferFrom(msg.sender, _destinationAddress, _amount);

emit Deposit(msg.sender, _amount, address(depositToken), shareToken,
_destinationAddress);↪→

}

The attack begins with an attacker holding a balance of stablecoins, for example 100
USDC. The attacker calls the deposit function and specifies their own wallet address as
the destination address. The contract executes the transferFrom function, moving 100
USDC from the attacker to the attacker. Consequently, the attacker's balance remains
unchanged and no funds are locked in the contract. However, the contract emits a valid
Deposit event. The off-chain bridge observes this event and, believing a valid deposit
occurred, mints corresponding Nuva Tokens(shares) to the attacker provided _destinatio
nAddress. The attacker has now effectively double-spent their funds, retaining the
original stablecoins while receiving the shares. This process can be repeated indefinitely.

22

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/59

Impact
This vulnerability allows for infinite minting of Nuva Tokens on the _destinationAddress
without any backing assets. This leads to immediate protocol insolvency as the minted
shares have no underlying value locked in the bridge.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/nuva-evm-contracts/contracts/Depositor.
sol#L175-L186

Tool Used
Manual Review

Recommendation
Modify _doDeposit to transfer the tokens to a protocol controlled address to enforce
custody/locking. The _destinationAddress should only be used in the event log to
indicate where the shares should be minted.

Discussion
scirner22

In practice it wouldn't really be attackable like this because the destinationAddress must
go to a specific place (cross chain bridge address) which locks and mints the tokens on
Provenance. The offchain system reads the event emitted here and combines it with
mint events on Provenance in order to advance. Also, the destinationAddress is present
in the amlSignature and the amlSigner address is set during the initialization step. The
attack vector here would be if our FE allowed the user to craft a request in which it
attested to an invalid destinationAddress. That would not result in the user getting
minted nuTOKEN shares, but rather just send the funds to an address that might or might
not be in their control.

This surfaces the fact that the FE could have a bug and send to an incorrect
destinationAddress, in which case the user's funds could be locked up (never
recoverable). I'm going to implement a two step check here, add a destinationAddress
admin which can add and remove an allowlist of destination addresses and then during
deposit we verify the requested destinationAddress is contained in that list in order to
proceed. In order for funds to go to the wrong place, the destinationAddress list admin
and the Nuva FE would both need to incorrectly set the same bad address rather than
either side providing bad data alone.

23

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/nuva-evm-contracts/contracts/Depositor.sol#L175-L186
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/nuva-evm-contracts/contracts/Depositor.sol#L175-L186
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/nuva-evm-contracts/contracts/Depositor.sol#L175-L186

For more background, the destinationAddress is a third party bridge address which is
relatively static, but can change a few times per year.

Kirkeelee

Thanks for the feedback. Downgraded to medium just to point out that proper
verification is need for _destinationAddress.

scirner22

This should be fixed now since there was an introduction of a destinationAddress admin
to manage an allow list of destination addresses?

24

Issue M-7: Genesis import missing PayoutVerificat
ionSet restoration [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/60

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The InitGenesis function imports PayoutTimeoutQueue entries from genesis state but
completely ignores the PayoutVerificationSet. This means vaults pending verification
on chain upgrade/restart will be lost from the verification queue.

Vulnerability Detail
In genesis.go:55-77, only PayoutTimeoutQueue and PendingSwapOutQueue are imported:

// genesis.go:55-63
for _, entry := range genState.PayoutTimeoutQueue {

addr, err := sdk.AccAddressFromBech32(entry.Addr)
if err != nil {

panic(fmt.Errorf("invalid address in timeout queue: %w", err))
}
if err := k.PayoutTimeoutQueue.Enqueue(ctx, int64(entry.Time), addr); err !=

nil {↪→

panic(fmt.Errorf("failed to enqueue vault timeout for %s: %w", entry.Addr,
err))↪→

}
}
// PendingSwapOutQueue is imported at line 75-77
// PayoutVerificationSet is never imported!

Similarly, ExportGenesis at genesis.go:81-114 only exports PayoutTimeoutQueue:

// genesis.go:91-102
err := k.PayoutTimeoutQueue.Walk(ctx, func(periodTimeout uint64, vaultAddr

sdk.AccAddress) (stop bool, err error) {↪→

paymentTimeoutQueue = append(paymentTimeoutQueue, types.QueueEntry{
Time: periodTimeout,
Addr: vaultAddr.String(),

})
return false, nil

})
// PayoutVerificationSet is never exported!

25

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/60

Impact
On chain upgrade or genesis restart:

1. Vaults in the PayoutVerificationSet will be ”forgotten”

2. These vaults won't have their handleReconciledVaults() processing run in
EndBlocker

3. Interest reconciliation for these vaults will be skipped

4. Vaults may need manual re-registration via interest rate update

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/keeper/genesis.go

Tool Used
Manual Review

Recommendation
1. Add PayoutVerificationSet []string to GenesisState proto definition.

2. Export all addresses from PayoutVerificationSet in ExportGenesis.

3. Import and restore PayoutVerificationSet in InitGenesis.

Discussion
nullpointer0x00

Adding this to our next milestone.

26

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/genesis.go
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/genesis.go

Issue M-8: autoPauseVault sets zero PausedBalance
due to circular dependency [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/68

Summary
The autoPauseVault function sets vault.Paused = true before calling GetTVVInUnderlying
Asset. Since GetTVVInUnderlyingAsset returns PausedBalance.Amount when the vault is
paused, and PausedBalance hasn't been set yet, it returns zero. This zero value is then
stored as PausedBalance, creating a circular dependency that always results in zero
PausedBalance.

Vulnerability Detail
The autoPauseVault function in vault/keeper/vault.go has an ordering issue. The
function sets vault.Paused = true before calling GetTVVInUnderlyingAsset. However, Ge
tTVVInUnderlyingAsset checks if the vault is paused and returns PausedBalance.Amount.
Since PausedBalance hasn't been set yet, it returns zero. This zero value is then stored as
PausedBalance, creating a circular dependency.

Additionally, if GetTVVInUnderlyingAsset fails due to NAV conversion errors, the error is
logged but ignored, and zero is stored anyway.

Impact
Vault is always paused with zero PausedBalance when auto-paused, regardless of actual
vault value. All TVV queries while paused return zero, showing incorrect vault value.

Code Snippet

func (k *Keeper) autoPauseVault(ctx context.Context, vault *types.VaultAccount,
reason string) {↪→

sdkCtx := sdk.UnwrapSDKContext(ctx)

sdkCtx.Logger().Error(
"Auto-pausing vault due to critical error",
"vault_address", vault.GetAddress().String(),
"reason", reason,

)

vault.Paused = true
vault.PausedReason = reason

27

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/68

tvv, err := k.GetTVVInUnderlyingAsset(sdkCtx, *vault)
if err != nil {

sdkCtx.Logger().Error("Failed to get TVV in underlying asset",
"vault_address", vault.GetAddress().String(), "error", err)↪→

}

vault.PausedBalance = sdk.Coin{Denom: vault.UnderlyingAsset, Amount: tvv}
k.AuthKeeper.SetAccount(ctx, vault)

k.emitEvent(sdkCtx, types.NewEventVaultPaused(vault.GetAddress().String(),
vault.GetAddress().String(), reason, vault.PausedBalance))↪→

}

Tool Used
Manual Review

Recommendation
Fix the ordering issue by getting TVV before setting vault.Paused = true.

Discussion
nullpointer0x00

Good catch. You are right about the ordering issue. Setting the Paused flag too early
causes the zero balance.

That said, if this triggers, the vault is already in a critical state and needs an admin to fix
it manually. The zero balance is just a display bug at that point, not a security risk.

I will fix it in the next release. I think it should be lower severity though.

28

Issue M-9: handleVaultInterestTimeouts dequeues
timeoutbutdoesnot re-enqueueonfailure [ACKNOWL-
EDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/73

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The handleVaultInterestTimeouts function dequeues timeout entries before attempting
interest reconciliation. If PerformVaultInterestTransfer fails, the function continues
without re-enqueuing a timeout or resetting PeriodStart. While the vault can recover
through user operations that trigger reconcileVaultInterest, automatic interest
reconciliation is broken until recovery occurs, and if there's no user activity, the vault
remains stuck without automatic reconciliation.

Vulnerability Detail
The handleVaultInterestTimeouts function processes vaults with expired interest periods:

1. The timeout entry is dequeued from PayoutTimeoutQueue

2. If PerformVaultInterestTransfer fails, the error is logged and execution continues

3. Only successful reconciliations are added to the reconciled list

4. resetVaultInterestPeriods is only called for vaults in the reconciled list.

Impact
Automatic interest reconciliation stops working if PerformVaultInterestTransfer fails in
handleVaultInterestTimeouts. Interest will not accrue automatically until user activity
triggers recovery or the issue is manually resolved. If there's no user activity, the vault
remains stuck without automatic reconciliation indefinitely. PeriodStart remains stale,
causing incorrect interest calculations if reconciliation is later triggered. The vault
requires user activity or manual intervention to restore automatic interest reconciliation.

Code Snippet

func (k *Keeper) handleVaultInterestTimeouts(ctx context.Context) error {
sdkCtx := sdk.UnwrapSDKContext(ctx)
now := sdkCtx.BlockTime().Unix()

29

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/73

var keysToProcess []collections.Pair[uint64, sdk.AccAddress]
var depleted []*types.VaultAccount
var reconciled []*types.VaultAccount

err := k.PayoutTimeoutQueue.WalkDue(ctx, now, func(timeout uint64, addr
sdk.AccAddress) (bool, error) {↪→

key := collections.Join(timeout, addr)
vault, ok := k.tryGetVault(sdkCtx, addr)
if ok && vault.Paused {

return false, nil
}
keysToProcess = append(keysToProcess, key)
return false, nil

})
if err != nil {

return fmt.Errorf("walk failed: %w", err)
}

for _, key := range keysToProcess {
timeout := key.K1()
addr := key.K2()

// Timeout is dequeued FIRST
if err := k.PayoutTimeoutQueue.Dequeue(ctx, int64(timeout), addr); err !=

nil {↪→

sdkCtx.Logger().Error("CRITICAL: failed to dequeue interest timeout,
skipping", "vault", addr.String(), "err", err)↪→

continue
}

vault, ok := k.tryGetVault(sdkCtx, addr)
if !ok {

continue
}

periodDuration := int64(timeout) - vault.PeriodStart
if periodDuration < 0 {

periodDuration = now - vault.PeriodStart
}

canPay, err := k.CanPayoutDuration(sdkCtx, vault, periodDuration)
if err != nil {

sdkCtx.Logger().Error("failed to check payout ability", "vault",
addr.String(), "err", err)↪→

continue // Timeout dequeued but not re-enqueued
}

if !canPay {
depleted = append(depleted, vault)
continue

30

}

// If this fails, timeout is dequeued but not re-enqueued
if err := k.PerformVaultInterestTransfer(sdkCtx, vault); err != nil {

sdkCtx.Logger().Error("failed to reconcile interest", "vault",
addr.String(), "err", err)↪→

continue // Timeout dequeued but not re-enqueued, PeriodStart not reset
}

reconciled = append(reconciled, vault)
}

// Only called for successfully reconciled vaults
k.resetVaultInterestPeriods(ctx, reconciled)
k.handleDepletedVaults(ctx, depleted)
return nil

}

Tool Used
Manual Review

Recommendation
Re-enqueue timeout or add vault to a retry mechanism if PerformVaultInterestTransfer
fails.

Discussion
nullpointer0x00

Good catch. We originally thought the next user action would fix the state
automatically. But you are right. If the vault is idle, it gets stuck. That is not ideal.

We need a retry mechanism and perhaps an emitted event might be helpful. I am adding
this to the next release.

31

IssueM-10: Missing slippage protection in swap and
bridge operations [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/83

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The SwapIn and SwapOut functions execute conversions between Assets and Shares at
the calculated Net Asset Value (NAV) without allowing the user to specify a minimum
acceptable output amount. This exposes users to unlimited slippage due to transactions
not being atomic or market volatility during the mandatory withdrawal delay (on
redemption). This risk extends to cross-chain bridging operations, where users moving
funds to EVM chains have no guarantee of the final exchange rate after the bridging
delay.

Vulnerability Detail
In the SwapIn function, the number of shares to mint is calculated based on the current
NAV at the moment of execution. Since there is no minShares parameter, a user's
transaction can be front-run by a large deposit or interest update that alters the NAV,
resulting in fewer shares than expected.

Similarly, SwapOut calculates the redemption amount based on the NAV at the time of
execution (after WithdrawalDelaySeconds), not the time of request. The PendingSwapOut
struct does not store a minimum acceptable amount. Consequently, if the vault's value
decreases during the delay period, the user is forced to accept the lower payout.

This issue is compounded in cross-chain bridging scenarios. Users bridging shares to EVM
chains rely on the NAV remaining stable during the cross-chain message propagation
and processing time, but lack any mechanism to revert the transaction if the rate
becomes unfavorable.

Impact
Users are vulnerable to sandwich attacks during deposits and unavoidable value loss
during withdrawals due to market volatility during the delay period. In cross-chain
scenarios, this can lead to significant discrepancies between the value sent and the
value received on the destination chain.

32

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/83

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L168-L224

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L243-L300

Tool Used
Manual Review

Recommendation
Update MsgSwapIn to include a MinShares field and enforce that the minted shares are
greater than or equal to this minimum. Update MsgSwapOut to include a MinRedeemAmount
field and store this value in the PendingSwapOut record. In the EndBlocker execution logic,
verify that the calculated payout meets the MinRedeemAmount. If it does not, fail the
payout and refund the shares to the user. Ensure bridge messages include slippage
parameters to protect cross-chain transfers.

Discussion
nullpointer0x00

We have discussed similar parameters for next releases. I will add this to next milestone.

33

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L168-L224
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L168-L224
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L243-L300
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L243-L300

IssueM-11: Withdrawalqueuegriefingviabatch limit
[ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/84

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The EndBlocker processes only 100 withdrawal requests per block (MaxSwapOutBatchSize).
An attacker can flood the withdrawal queue with their own requests to delay legitimate
users' withdrawals indefinitely.

Vulnerability Detail
The vault module processes pending swap-out requests in batches with a fixed limit of
100 requests per block. The queue is ordered by timestamp first, then by request ID. Since
request IDs are sequential, an attacker who creates requests before a victim will have
lower IDs and be processed first when requests share the same timestamp.

Batch Limit Implementation (vault/keeper/abci.go):

const (
// MaxSwapOutBatchSize is the maximum number of pending swap-out requests
// to process in a single EndBlocker invocation. This prevents a large queue
// from consuming excessive block time and memory. This is a temporary value
// and we will need to do more analysis on a proper batch size.
MaxSwapOutBatchSize = 100 // Fixed limit

)

Queue Processing (vault/keeper/payout.go):

func (k *Keeper) processPendingSwapOuts(ctx context.Context, batchSize int) error {
sdkCtx := sdk.UnwrapSDKContext(ctx)
now := sdkCtx.BlockTime().Unix()
var jobsToProcess []types.PayoutJob

processed := 0
err := k.PendingSwapOutQueue.WalkDue(ctx, now, func(timestamp int64, id uint64,

vaultAddr sdk.AccAddress, req types.PendingSwapOut) (stop bool, err error) {↪→

vault, ok := k.tryGetVault(sdkCtx, vaultAddr)
if ok && vault.Paused {

return false, nil
}
if processed == batchSize {

return true, nil // Stops processing after 100 requests

34

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/84

}
processed++
jobsToProcess = append(jobsToProcess, types.NewPayoutJob(timestamp, id,

vaultAddr, req))↪→

return false, nil
})
// ... process jobs ...

}

Queue Ordering (vault/queue/pending_swap_out.go):

The queue key is (timestamp, id, vault), ordered by timestamp first, then ID. Request
IDs are sequential:

func (p *PendingSwapOutQueue) Enqueue(ctx context.Context, pendingTime int64, req
*types.PendingSwapOut) (uint64, error) {↪→

// ...
id, err := p.Sequence.Next(ctx) // Sequential ID generation
if err != nil {

return 0, err
}
return id, p.IndexedMap.Set(ctx, collections.Join3(pendingTime, id, vault),

*req)↪→

}

The SwapOut function (vault/keeper/vault.go) does not enforce any limits on:

• Number of pending requests per user

• Total requests in queue

• Request creation rate

Impact
Legitimate users cannot withdraw funds in a timely manner.

Tool Used
Manual Review

Recommendation
Add a limit on pending withdrawals per user.

35

Discussion
nullpointer0x00

This one has been discussed for future releases. I'm adding it to next milestone.

36

IssueM-12: NAVstalenessduringcooldown [ACKNOWL-
EDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/89

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
Withdrawal amounts are calculated at request time (SwapOut) for validation purposes,
but the actual payout amount is recalculated at execution time
(processSingleWithdrawal) using the current NAV/TVV. The calculated amount at
request time is not stored in the PendingSwapOut request, creating an issue where the
payout amount can change between request and execution. This allows the payout
amount to be manipulated through large deposits, NAV price updates, or interest
reconciliation during the cooldown period, resulting in users receiving different amounts
than what was validated at request time.

Vulnerability Detail
The vault module uses a two-phase withdrawal process:

1. Request Phase (SwapOut): User requests withdrawal, assets are calculated for
validation, shares are escrowed, and the request is queued with a cooldown period.

2. Execution Phase (processSingleWithdrawal): After the cooldown expires, the
EndBlocker processes the queued withdrawal, recalculates assets using current
TVV/NAV, and transfers the recalculated amount to the user.

The PendingSwapOut structure only stores the number of shares and redeem denom, not
the expected asset amount. At execution time, ConvertSharesToRedeemCoin is called
again using the current vault state, which may have changed during the cooldown
period.

Impact
Users receive different payout amounts than what was calculated and validated at
request time.

Code Snippet
Request Time Calculation (vault/keeper/vault.go):

37

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/89

assets, err := k.ConvertSharesToRedeemCoin(ctx, *vault, shares.Amount, redeemDenom)
if err != nil {

return 0, fmt.Errorf("failed to calculate assets from shares: %w", err)
}

if err := k.checkPayoutRestrictions(ctx, vault, owner, assets); err != nil {
return 0, err

}
// assets is not stored in PendingSwapOut

PendingSwapOut Structure (vault/proto/provlabs/vault/v1/vault.proto):

message PendingSwapOut {
string owner = 1;
string vault_address = 2;
cosmos.base.v1beta1.Coin shares = 3;
string redeem_denom = 4;
// @audit No field for expected_assets or calculated_amount

}

Execution Time Recalculation (vault/keeper/payout.go):

if err := k.reconcileVaultInterest(ctx, &vault); err != nil {
return fmt.Errorf("failed to reconcile vault interest: %w", err)

}

assets, err := k.ConvertSharesToRedeemCoin(ctx, vault, req.Shares.Amount,
req.RedeemDenom)↪→

// Recalculated using current TVV/NAV, may differ from request time
if err := k.BankKeeper.SendCoins(..., sdk.NewCoins(assets)); err != nil {

return err
}

Tool Used
Manual Review

Recommendation
Store the expected asset amount in PendingSwapOut at request time and use it for payout
at execution time. This ensures users receive the amount that was calculated and
validated at request time.

38

Discussion
nullpointer0x00

This is expected behavior. When a user requests a swapout, their shares are escrowed in
the vault during the cooldown period. However, the conversion rate is intentionally
calculated at the time of execution, not the time of request.

This ensures the user receives the actual value of the shares at the moment of payout,
including any interest accrued or NAV changes that occurred during the wait.

We have talked about adding slippage parameters in a future release. Also, allowing the
cancel of pending swapouts.

39

Issue L-1: Use Ownable2Step instead of Ownable for
factory contracts [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/42

Summary
The DepositorFactory and WithdrawalFactory contracts inherit from OpenZeppelin's Owna
ble contract, which uses a single-step ownership transfer process. This implementation is
vulnerable to accidental permanent loss of ownership if the new owner address is
incorrect or inaccessible. OpenZeppelin's Ownable2Step provides a safer two-step
transfer process that requires the new owner to accept ownership.

Vulnerability Detail
Both factory contracts inherit from Ownable:

DepositorFactory.sol

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

contract DepositorFactory is Ownable {
constructor(address _implementation) Ownable(msg.sender) {

// ...
}

}

WithdrawalFactory.sol

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

contract WithdrawalFactory is Ownable {
constructor(address _implementation) Ownable(msg.sender) {

// ...
}

}

The standard Ownable contract uses transferOwnership() which immediately transfers
ownership in a single transaction:

function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner); // Immediate transfer

}

40

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/42

Impact
If ownership is transferred to an incorrect or inaccessible address, the protocol loses the
ability to:

• Create new depositor/withdrawal contracts

• Migrate existing contracts to new implementations

• Update factory implementations

• Perform any administrative functions

Tool Used
Manual Review

Recommendation
Replace Ownable with Ownable2Step in both factory contracts.

Discussion
scirner22

Thank you. This will be corrected.

defsec

Fix is confirmed on the https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f5
3b2f1a2434cad5f9572c17ad6e6619eca34b.

41

https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b
https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b

Issue L-2: Contract has no admin transfer mecha-
nism [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/44

Summary
The contract sets bridge_admin during instantiation and provides no mechanism to
transfer or update the admin address. If the admin key is lost, compromised, or needs to
be rotated for security reasons, the contract becomes permanently locked with no way
to recover administrative control over critical functions like SetSwapInReceiptData and Bu
rnSwapInReceipt.

Vulnerability Detail
The bridge_admin address is set once during contract instantiation and stored in the
contract state. There is no execute message to transfer or update this address:

// Instantiation (contract.rs:37-41)
let bridge_admin = if let Some(bridge_admin) = msg.bridge_admin {

deps.api.addr_validate(&bridge_admin)?
} else {

info.sender
};
let state = State::new(

bridge_admin,
vault,
deps.api.addr_validate(&msg.vault_address)?,

)?;
STATE.save(deps.storage, &state)?;

Impact
If admin private key is lost, contract becomes permanently unusable.

Tool Used
Manual Review

Recommendation
Add a TransferAdmin execute message that allows current admin to transfer control.

42

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/44

Discussion
scirner22

Thank you. This will be added.

defsec

Fixed with https://github.com/ProvLabs/nuva-cosmos-contracts/commit/001d23527c8
d29b05f0b91d49cc96c21577ab13e.

43

https://github.com/ProvLabs/nuva-cosmos-contracts/commit/001d23527c8d29b05f0b91d49cc96c21577ab13e
https://github.com/ProvLabs/nuva-cosmos-contracts/commit/001d23527c8d29b05f0b91d49cc96c21577ab13e

IssueL-3: CustomTokenconstructor contains redun-
dant zero amount mint [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/45

Summary
The CustomToken constructor calls _mint(_admin, 0) which is a redundant operation that
wastes gas. Minting zero tokens has no effect on token balances or state, but still
consumes gas for the function call and event emission.

Vulnerability Detail
In CustomToken.sol:37-47, the constructor performs a zero-amount mint:

constructor(
string memory _name,
string memory _symbol,
address _admin,
uint8 _decimals

) ERC20(_name, _symbol) ERC20Permit(_name) {
_customDecimals = _decimals;
_grantRole(DEFAULT_ADMIN_ROLE, _admin);
_grantRole(MINTER_ROLE, _admin);
_mint(_admin, 0); // @audit Redundant: minting zero tokens has no effect

}

Impact
Unnecessary gas consumption on every token deployment.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/mai
n/nuva-evm-contracts/contracts/CustomToken.sol#L46

Tool Used
Manual Review

44

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/45
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-evm-contracts/contracts/CustomToken.sol#L46
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-evm-contracts/contracts/CustomToken.sol#L46

Recommendation
Remove the redundant zero-amount mint call.

Discussion
scirner22

Thank you. This will be removed.

defsec

Fix is confirmed on the https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f5
3b2f1a2434cad5f9572c17ad6e6619eca34b.

45

https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b
https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b

Issue L-4: Receipt ID collision risk [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/46

Summary
Receipt IDs are user-provided strings without cryptographic uniqueness guarantees. A
malicious or buggy off-chain system could create ID collisions.

Vulnerability Detail
The swap_in function accepts a user-provided id parameter:

fn swap_in(
deps: DepsMut,
env: Env,
info: MessageInfo,
id: String, // <-- User-provided
to_address: String,

) -> ContractResult<Response> {
// ...
let payload = SwapInPayload {

id: id.try_into()?, // Only length validation
to_address,

};
// ...

}

The only validation is in ReceiptId::try_from():

impl TryFrom<String> for ReceiptId {
type Error = StdError;

fn try_from(desired: String) -> Result<Self, Self::Error> {
let value = desired.trim();
if value.is_empty() {

return Err(StdError::generic_err("receipt id cannot be empty"));
}

if value.len() < 8 || value.len() > 36 {
return Err(StdError::generic_err(

"receipt id must be between 8 and 36 characters",
));

}

Ok(Self(desired))

46

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/46

}
}

While the reply handler checks for duplicate IDs:

SWAP_IN_RECEIPTS.update(
deps.storage,
payload.id.as_ref(),
|receipt| match receipt {

Some(_) => Err(StdError::generic_err("receipt id already exists")),
None => Ok(SwapInReceipt { /* ... */ }),

},
)?;

This creates a front-running vulnerability where:

1. User A submits swap with ID ”12345678”

2. User B front-runs with same ID

3. User A's transaction fails

4. User A loses gas and AML checks

Impact
Depends entirely on off-chain coordination.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/mai
n/nuva-cosmos-contracts/src/contract.rs#L74

Tool Used
Manual Review

Recommendation
Generate receipt IDs on-chain using a counter or hash to guarantee uniqueness.

Discussion
scirner22

This id provides assurances that the offchain system does not attempt to reprocess
events during partial failure states.

47

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-cosmos-contracts/src/contract.rs#L74
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/nuva-cosmos-contracts/src/contract.rs#L74

It seems like we can have the interface use id as it does now, but internally we can
combine it with the sender's address so internally each sender has a unique set of id's
they can use.

If you agree with this approach, we will create an issue.

defsec

Thanks for the clarification!

Using the user-provided id as an off-chain deduplication hint makes sense, and
combining it internally with the sender’s address would indeed eliminate the
collision/front-running risk. That approach preserves the existing interface while
ensuring that uniqueness is guaranteed at the contract level.

From a security perspective, namespacing receipt IDs by sender (e.g., hash(sender || id))
resolves the current class of issues:

• Prevents malicious users from front-running another user’s id.

• Avoids cross-user collisions caused by off-chain retries or partial-failure scenarios.

• Maintains the off-chain system’s ability to use the ID for replay-prevention and
recovery logic.

scirner22

I thought about this more and instead I'm just going to require swap_in be called by the b
ridge_admin. This was not strictly required outside of solving this issue, but in practice
this contract is meant to be the proxy for the bridge admin to execute so it makes sense
to have all endpoints locked down to the bridge admin.

This also helps after solving the other issue adding an update_bridge_admin() endpoint
because with my first proposed methodology of scoping the receipt_ids with the user's
address, it would mean one bridge admin could not burn receipts for the previous bridge
admin which is not the behavior we would want.

defsec

Fixed with https://github.com/ProvLabs/nuva-cosmos-contracts/commit/001d23527c8
d29b05f0b91d49cc96c21577ab13e.

48

https://github.com/ProvLabs/nuva-cosmos-contracts/commit/001d23527c8d29b05f0b91d49cc96c21577ab13e
https://github.com/ProvLabs/nuva-cosmos-contracts/commit/001d23527c8d29b05f0b91d49cc96c21577ab13e

Issue L-5: Withdraw function actually deposits to-
kens [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/50

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The withdraw() function in the Withdrawal contract does not actually withdraw tokens to
the user. Instead, it transfers tokens FROM the user TO the contract, which is functionally
a deposit/lock operation. This is misleading naming that contradicts the expected
behavior of a ”withdraw” function.

Vulnerability Detail
In Withdrawal.sol, the _doWithdraw() function (called by withdraw() and withdrawWithPer
mit()) transfers tokens from the user to the contract:

function _doWithdraw(uint256 _amount) private {
shareToken.safeTransferFrom(msg.sender, address(this), _amount); // @audit

Transfers TO contract↪→

emit Withdraw(msg.sender, _amount, address(shareToken), paymentToken);
}

Impact
• Users expect withdraw() to send tokens to them.

• Instead, tokens are locked in the contract.

Code Snippet

function _doWithdraw(uint256 _amount) private {
shareToken.safeTransferFrom(msg.sender, address(this), _amount); // @audit TO

contract, not FROM↪→

emit Withdraw(msg.sender, _amount, address(shareToken), paymentToken);
}

Tool Used
Manual Review

49

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/50

Recommendation
Consider adding a comment or fix the function.

Discussion
scirner22

In this case the full withdrawal is a multi step/chain process that happens both on and
off chain. This first step locks the tokens in this contract since the user is exchanging
their nuva tokens for a stablecoin.

Nuva tokens get locked bridge burns eth nuva tokens for provenance nuva tokens nuva
tokens are swapped for stablecoin payment token bridge withdraws stablecoin payment
token to the user's eth wallet

defsec

Hi @scirner22 , Thank you so much for the response! I especially wanted to check if
there's any confusion on the off-chain part, since the withdrawal event does not contain
any ID or nonce parameter.

scirner22

Yes, thank you. This was something on my radar as an improvement for v2. We will be
deciding which proper bridge we will integrate with and then this implementation will
change to integrate with that, or we will continue our manual off chain bridging in which
case we should be able to implement a receipt system in both Withdraw and Deposit so
the off chain minter/burner operations are guarded against replay at the evm level.

50

IssueL-6: Vault statechangesbypass validationvia
direct AuthKeeper.SetAccount [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/53

Summary
Several functions modify vault state and persist it using k.AuthKeeper.SetAccount()
directly, bypassing the SetVaultAccount() wrapper that performs validation. This allows
potentially invalid vault states to be persisted.

Vulnerability Detail
The SetVaultAccount function in state.go validates the vault before saving:

func (k *Keeper) SetVaultAccount(ctx sdk.Context, vault *types.VaultAccount) error {
if err := vault.Validate(); err != nil {

return err
}
k.AuthKeeper.SetAccount(ctx, vault)
return nil

}

However, the following functions bypass this validation by calling AuthKeeper.SetAccount
directly:

1. processSingleWithdrawal (payout.go):

vault.TotalShares, err = vault.TotalShares.SafeSub(req.Shares)
if err != nil {

// ...
}
k.AuthKeeper.SetAccount(ctx, &vault) // Direct call - no validation!

2. UpdateInterestRates (reconcile.go):

vault.CurrentInterestRate = currentRate
vault.DesiredInterestRate = desiredRate
k.AuthKeeper.SetAccount(ctx, vault) // Direct call - no validation!

Note: autoPauseVault (vault.go) also uses direct AuthKeeper.SetAccount, but this is
intentional, during critical error recovery, pausing the vault takes priority over validation.

51

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/53

Impact
Vault state changes could violate invariants checked by Validate().

Code Snippet

// vault/keeper/payout.go
k.AuthKeeper.SetAccount(ctx, &vault) // Should use SetVaultAccount

// vault/keeper/reconcile.go
k.AuthKeeper.SetAccount(ctx, vault) // Should use SetVaultAccount

Tool Used
Manual Review

Recommendation
Replace direct AuthKeeper.SetAccount calls with SetVaultAccount in:

1. processSingleWithdrawal (payout.go:170)

2. UpdateInterestRates (reconcile.go:190)

Discussion
nullpointer0x00

The autoPause mechanism is used to pause the vault when a critical error happens that
sets the vault into an invalid state. This is why I chose to skip the validation here. Pausing
the vault is the most important thing to do here to prevent any other corruption.

defsec

Hi @nullpointer0x00 , Thank you so much for information, There are some other functions
which is not using SetVaultAccount :

UpdateInterestRates()
processSingleWithdrawal()

Are they intended as well?

nullpointer0x00

Nope, those ones were missed. We will update those. Thanks!

defsec

52

Fixed with https://github.com/ProvLabs/vault/pull/147/files
allowbreak
#diff-456482902e57c6db3b9397fca5b013668dfa2914861ef8245fec8118ceb67983

53

https://github.com/ProvLabs/vault/pull/147/files\##diff-456482902e57c6db3b9397fca5b013668dfa2914861ef8245fec8118ceb67983
https://github.com/ProvLabs/vault/pull/147/files\##diff-456482902e57c6db3b9397fca5b013668dfa2914861ef8245fec8118ceb67983
https://github.com/ProvLabs/vault/pull/147/files\##diff-456482902e57c6db3b9397fca5b013668dfa2914861ef8245fec8118ceb67983

Issue L-7: Withdrawal contract grants excessive ad-
min privileges to burnUser [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/54

Summary
The Withdrawal contract's initialize function grants both DEFAULT_ADMIN_ROLE and BURN
_ROLE to the burnUser address. This violates the principle of least privilege, as the burnUse
r only needs BURN_ROLE to perform token burns.

Vulnerability Detail
In OpenZeppelin's AccessControlUpgradeable, the DEFAULT_ADMIN_ROLE is a powerful role
that can:

• Grant and revoke any role (including itself)

• Override access controls

• Potentially modify contract state if admin functions exist

The Withdrawal contract only has one function that requires role-based access: burn(),
which uses onlyRole(BURN_ROLE). There are no functions that require DEFAULT_ADMIN_ROLE,
making the grant of admin privileges unnecessary.

Impact
If burnUser account is compromised, attacker has full admin control.

Code Snippet

function initialize(
address _shareTokenAddress,
address _paymentTokenAddress,
address _amlSignerAddress,
address burnUser

) external initializer {
__AccessControl_init();
if (_shareTokenAddress == address(0)) {

revert InvalidAddress("Invalid withdrawal token");
}
if (_paymentTokenAddress == address(0)) {

revert InvalidAddress("Invalid payment token");

54

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/54

}
if (_amlSignerAddress == address(0)) {

revert InvalidAddress("Invalid AML signer");
}

shareToken = ICustomToken(_shareTokenAddress);
paymentToken = _paymentTokenAddress;
amlSigner = _amlSignerAddress;
_grantRole(DEFAULT_ADMIN_ROLE, burnUser);
_grantRole(BURN_ROLE, burnUser);

emit WithdrawalInitialized(_shareTokenAddress, _paymentTokenAddress,
_amlSignerAddress);↪→

}

Tool Used
Manual Review

Recommendation
Only grant BURN_ROLE to burnUser. If admin privileges are needed, they should be granted
to a separate, dedicated admin address.

Discussion
scirner22

Correcting this by adding a BURN_ADMIN_ROLE in this contract and MINTER_ADMIN_ROLE in
CustomToken and then using _setRoleAdmin(..) to allow those custom admin roles to
manage the specific role types. Both admins are set to msg.sender so the contract
creator can manage the associated role over time.

defsec

Fix is confirmed on the https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f5
3b2f1a2434cad5f9572c17ad6e6619eca34b.

55

https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b
https://github.com/ProvLabs/nuva-evm-contracts/commit/f4f53b2f1a2434cad5f9572c17ad6e6619eca34b

Issue L-8: Missing Defensive Allowlist Check in TVV
Calculation [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/56

Summary
The GetTVVInUnderlyingAsset function iterates over all token balances held by the Princ
ipalMarkerAddress to calculate the Total Vault Value. While current marker access
controls prevent unauthorized deposits of unsupported tokens, adding an explicit
allowlist check for the underlying asset and payment denom provides robust
defense-in-depth against future code changes or potential bypasses in the marker
permission system.

Vulnerability Detail
Currently, GetTVVInUnderlyingAsset retrieves all balances via k.BankKeeper.GetAllBalan
ces(ctx, vault.PrincipalMarkerAddress(). It iterates through every token found and
attempts to convert it to the underlying asset value using ToUnderlyingAssetAmount.

balances := k.BankKeeper.GetAllBalances(ctx, vault.PrincipalMarkerAddress())
total := math.ZeroInt()
for _, balance := range balances {

if balance.Denom == vault.TotalShares.Denom {
continue

}
val, err := k.ToUnderlyingAssetAmount(ctx, vault, balance)
if err != nil {

return math.Int{}, err
}

Although the PrincipalMarkerAddress is a restricted marker account that blocks
unauthorized transfers from external users, relying solely on this external restriction
creates a brittle dependency. If a future upgrade relaxes marker restrictions, or if a
privileged governance operation accidentally sends unsupported tokens to this address,
the TVV calculation could fail (causing a DoS) or be manipulated.

Impact
There is no immediate exploit vector because the Provenance Marker module restricts
transfers to this address. However, the lack of validation leaves the vault vulnerable to
state corruption if the marker protections fail or are bypassed in the future.

56

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/56

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/keeper/valuation_engine.go#L137-L1
47

Tool Used
Manual Review

Recommendation
Add the following check:

for _, balance := range balances {
if balance.Denom == vault.TotalShares.Denom {

continue
}

// FIX: Strict Allowlist.
// Only calculate value for the Underlying Asset and the configured Payment

Denom.↪→

if balance.Denom != vault.UnderlyingAsset && balance.Denom !=
vault.PaymentDenom {↪→

continue
}

val, err := k.ToUnderlyingAssetAmount(ctx, vault, balance)

Alternatively, IsAcceptedDenom function can be used which has the same logic.

Discussion
nullpointer0x00

Adding to next milestone.

defsec

Fixed with https://github.com/ProvLabs/vault/pull/145.

57

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/valuation_engine.go#L137-L147
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/valuation_engine.go#L137-L147
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/valuation_engine.go#L137-L147
https://github.com/ProvLabs/vault/pull/145

IssueL-9: PaymentDenomNAVstaleness [ACKNOWL-
EDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/58

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The UnitPriceFraction function selects between forward and reverse NAV based solely
on UpdatedBlockHeight, without considering NAV age or staleness. An attacker can
profit from outdated NAV prices.

Vulnerability Detail
In vault/keeper/valuation_engine.go:72-80:

useForward := false
switch {
case fwd != nil && rev == nil:

useForward = true
case fwd == nil && rev != nil:

useForward = false
default:

useForward = fwd.UpdatedBlockHeight >= rev.UpdatedBlockHeight // Only checks
which is newer↪→

}

There's no check for:

1. Maximum NAV age (e.g., must be updated within last 100 blocks)

2. Price deviation limits

Impact
Stale oracle prices allow attackers to extract value.

Tool Used
Manual Review

58

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/58

Recommendation
Add NAV freshness validation.

Discussion
nullpointer0x00

Yes, this is a concern. That is why we have our uylds.fcc short circuit currently in our
pricing engine. With our first vaults this code will not be executed. The NAV system is
something we are working on with provenance on fixing these issues.

This is very helpful input as we think these things through.

59

IssueL-10: Contractsdonotaccount for fee-on-transfer
tokens [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/62

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The Depositor and Withdrawal contracts assume that the amount of tokens transferred
equals the amount specified in function parameters. However, some ERC20 tokens
(known as ”fee-on-transfer” tokens) deduct a fee during transfers, meaning the recipient
receives less tokens than the amount specified.

Vulnerability Detail
Fee-on-transfer tokens deduct a percentage or fixed fee during transfer() or transferFr
om() operations. Examples include:

• PAXG (Paxos Gold) - takes a fee on transfer

• Some USDT implementations on certain chains

• Various rebasing tokens

When transferring 100 tokens of a fee-on-transfer token with a 1% fee:

• Sender's balance decreases by: 100 tokens

• Recipient's balance increases by: 99 tokens

• Fee is deducted: 1 token

Impact
Tokens are lost in the accounting gap between specified amount and received amount.

Code Snippet

function _doDeposit(uint256 _amount, address _destinationAddress) private {
if (_amount == 0) {

revert InvalidAmount();
}
if (_destinationAddress == address(0)) {

revert InvalidAddress("destination");
}

60

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/62

// @audit Assumes _amount tokens are received
depositToken.safeTransferFrom(msg.sender, _destinationAddress, _amount);

// @audit Event shows incorrect amount if fee-on-transfer
emit Deposit(msg.sender, _amount, address(depositToken), shareToken,

_destinationAddress);↪→

}

Tool Used
Manual Review

Recommendation
Modify functions to measure the actual balance before and after transfer.

Discussion
scirner22

Are we good with taking this forward as a long term issue? Our v1 deployment will be
Ethereum and the only tokens across deposit/withdraw will be our CustomTokens and
Circle's USDC. It seems like Circle does not implement such a fee in kind.

61

Issue L-11: AutoCLI positional arguments order mis-
matchwithprotofielddefinitions [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/63

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The AutoCLI configuration in vault/module.go has positional argument orders that do
not match the proto field definitions for CreateVault and SetShareDenomMetadata
commands. While AutoCLI uses ProtoField names to map arguments correctly, the order
mismatch creates user confusion and documentation inconsistency.

Vulnerability Detail
Issue 1: CreateVault - Field Order Mismatch

Proto field order: admin (1), share_denom (2), underlying_asset (3) CLI positional order: admi
n, underlying_asset, share_denom

The CLI places underlying_asset (proto field 3) before share_denom (proto field 2).

Issue 2: SetShareDenomMetadata - Field Order Mismatch

Proto field order: metadata (1), admin (2), vault_address (3) CLI positional order: admin, vaul
t_address, metadata

The CLI completely reverses the proto field order, placing metadata last when it's defined
first in the proto.

Code Snippet

// vault/module.go:168-172 - CreateVault
{

RpcMethod: "CreateVault",
Use: "create [admin] [underlying_asset] [share_denom]", // Wrong order
PositionalArgs: []*autocliv1.PositionalArgDescriptor{

{ProtoField: "admin"}, // Field 1
{ProtoField: "underlying_asset"}, // Field 3 (should be field 2)
{ProtoField: "share_denom"}, // Field 2 (should be field 3)

},
}

// vault/module.go:191-195 - SetShareDenomMetadata
{

62

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/63

RpcMethod: "SetShareDenomMetadata",
Use: "set-share-denom-metadata [admin] [vault_address] [metadata]", //

Wrong order↪→

PositionalArgs: []*autocliv1.PositionalArgDescriptor{
{ProtoField: "admin"}, // Field 2 (should be field 1)
{ProtoField: "vault_address"}, // Field 3 (should be field 2)
{ProtoField: "metadata"}, // Field 1 (should be field 3)

},
}

Tool Used
Manual Review

Recommendation
Match proto field order for consistency.

Discussion
nullpointer0x00

Good point! I have been meaning to better understand the autocli. I was so used to
years of just writing them by hand. Thanks for this input. Will fix next release.

63

Issue L-12: Zero assets with non-zero shares allows
share inflation [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/65

Summary
The CalculateSharesProRataFraction function uses a special first-deposit formula when
totalAssets is zero, but does not verify that totalShares is also zero. If totalAssets is
zero while totalShares is non-zero, the function mints shares using the first-deposit
formula that ignores existing shares, causing massive share supply inflation and
complete dilution of existing shareholders.

Vulnerability Detail
The function CalculateSharesProRataFraction in vault/utils/shares.go contains a
branch that handles the first deposit case:

if totalAssets.IsZero() {
shares := amountNumerator.Mul(ShareScalar).Quo(amountDenominator)
return sdk.NewCoin(shareDenom, shares), nil

}

This branch assumes that zero assets means it is the first deposit. However, it does not
check whether totalShares is also zero. The function proceeds to mint shares using the
formula amount * ShareScalar / denominator, which completely ignores any existing
shares.

The state where totalAssets = 0 but totalShares > 0 can occur due to floor division in
the redemption calculation. When CalculateRedeemProRataFraction computes payout
amounts, it uses integer floor division:

out := num.Quo(den) // Floor division

Impact
When a deposit occurs with zero assets but non-zero shares, the share supply inflates by
orders of magnitude.

Code Snippet
CalculateSharesProRataFraction (vault/utils/shares.go):

64

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/65

if totalAssets.IsZero() {
// Assumes first deposit without checking totalShares
shares := amountNumerator.Mul(ShareScalar).Quo(amountDenominator)
return sdk.NewCoin(shareDenom, shares), nil

}
// Normal pro-rata calculation
ta := totalAssets.Add(VirtualAssets)
ts := totalShares.Add(VirtualShares)
den := amountDenominator.Mul(ta)
shares := amountNumerator.Mul(ts).Quo(den)
return sdk.NewCoin(shareDenom, shares), nil

Tool Used
Manual Review

Recommendation
Add validation to ensure both assets and shares are zero before using the first-deposit
formula.

Discussion
nullpointer0x00

Will add this fix next release.

defsec

Fixed with https://github.com/ProvLabs/vault/pull/149/files.

65

https://github.com/ProvLabs/vault/pull/149/files

Issue L-13: Incomplete zero checks in UnitPriceFra
ction [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/66

Summary
The UnitPriceFraction function checks for zero volume in forward NAV and zero price in
reverse NAV, but does not check for zero price in forward NAV or zero volume in reverse
NAV. This creates inconsistent validation and allows invalid NAV data to be used in
calculations, resulting in zero conversion values without error indication.

Vulnerability Detail
The function UnitPriceFraction in vault/keeper/valuation_engine.go handles two NAV
directions with asymmetric validation:

Forward NAV Path :

if useForward {
if fwd.Volume == 0 {

return math.Int{}, math.Int{}, fmt.Errorf("nav volume is zero for %s/%s",
srcDenom, underlyingAsset)↪→

}
priceAmt := fwd.Price.Amount // No check if zero
volAmt := math.NewIntFromUint64(fwd.Volume)
return priceAmt, volAmt, nil

}

Reverse NAV Path:

if rev.Price.Amount.IsZero() {
return math.Int{}, math.Int{}, fmt.Errorf("nav price is zero for %s/%s",

underlyingAsset, srcDenom)↪→

}
priceAmt := math.NewIntFromUint64(rev.Volume) // No check if zero
volAmt := rev.Price.Amount
return priceAmt, volAmt, nil

The function validates:

• Forward NAV: checks fwd.Volume == 0 but not fwd.Price.Amount.IsZero()

• Reverse NAV: checks rev.Price.Amount.IsZero() but not rev.Volume == 0

When these unchecked zero values are returned, they are used in ToUnderlyingAssetAmou
nt:

66

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/66

func (k Keeper) ToUnderlyingAssetAmount(ctx sdk.Context, vault types.VaultAccount,
in sdk.Coin) (math.Int, error) {↪→

priceAmount, volume, err := k.UnitPriceFraction(ctx, in.Denom, vault)
if err != nil {

return math.Int{}, err
}
return in.Amount.Mul(priceAmount).Quo(volume), nil

}

Impact
1. Forward NAVwith Zero Price: If fwd.Price.Amount is zero, the function returns (0, v

olume). The calculation amount * 0 / volume = 0 produces zero results for all
conversions, indicating invalid NAV data without error.

2. Reverse NAVwith Zero Volume: If rev.Volume is zero, the function returns (0, price
Amount). The calculation amount * 0 / priceAmount = 0 produces zero results for all
conversions, indicating invalid NAV data without error.

Code Snippet
UnitPriceFraction (vault/keeper/valuation_engine.go):

if useForward {
if fwd.Volume == 0 {

return math.Int{}, math.Int{}, fmt.Errorf("nav volume is zero for %s/%s",
srcDenom, underlyingAsset)↪→

}
// Missing check: fwd.Price.Amount.IsZero()
priceAmt := fwd.Price.Amount
volAmt := math.NewIntFromUint64(fwd.Volume)
return priceAmt, volAmt, nil

}

if rev.Price.Amount.IsZero() {
return math.Int{}, math.Int{}, fmt.Errorf("nav price is zero for %s/%s",

underlyingAsset, srcDenom)↪→

}
// Missing check: rev.Volume == 0
priceAmt := math.NewIntFromUint64(rev.Volume)
volAmt := rev.Price.Amount
return priceAmt, volAmt, nil

ToUnderlyingAssetAmount (vault/keeper/valuation_engine.go):

67

func (k Keeper) ToUnderlyingAssetAmount(ctx sdk.Context, vault types.VaultAccount,
in sdk.Coin) (math.Int, error) {↪→

priceAmount, volume, err := k.UnitPriceFraction(ctx, in.Denom, vault)
if err != nil {

return math.Int{}, err
}
return in.Amount.Mul(priceAmount).Quo(volume), nil

}

Tool Used
Manual Review

Recommendation
Add comprehensive zero checks to both NAV paths to ensure consistent validation.

Discussion
nullpointer0x00

I will add this validation in the future. Currently, the markermodule does a validate on
those values and neither can be zero when adding it to the store.

This validate is called before any NAV is saved to the store.

// Validate returns error if NetAssetValue is not in a valid state
func (mnav *NetAssetValue) Validate() error {

if err := mnav.Price.Validate(); err != nil {
return err

}

if mnav.Price.Amount.GT(sdkmath.NewInt(0)) && mnav.Volume < 1 {
return fmt.Errorf("marker net asset value volume must be positive value")

}

return nil
}

Therefore:

fwd, errF := k.MarkerKeeper.GetNetAssetValue(ctx, srcDenom, underlyingAsset)
rev, errR := k.MarkerKeeper.GetNetAssetValue(ctx, underlyingAsset, srcDenom)

would never return zeros. However, it is better to have our own validations for possible
future changes.

68

defsec

Fixed with https://github.com/ProvLabs/vault/pull/155.

69

https://github.com/ProvLabs/vault/pull/155

Issue L-14: Lack of atomicity in withdrawal process-
ing leads topotential double spending. [ACKNOWL-
EDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/69

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The processSwapOutJobs function processes withdrawals in a loop. Inside the loop, proce
ssSingleWithdrawal performs two critical state changes: sending assets to the user and
burning the user's shares. These operations are not atomic. If the asset transfer
succeeds but the share burning fails (returning a critical error), the vault is paused, but
the asset transfer is not reverted. This leaves the system in an inconsistent state where
assets have left the vault without the corresponding liability (shares) being extinguished.

Vulnerability Detail
In processSingleWithdrawal, the code executes:

k.BankKeeper.SendCoins(..., assets): Transfers underlying assets to the user. k.BankKee
per.SendCoins(..., shares): Transfers shares to the marker account. k.MarkerKeeper.Bu
rnCoin(...): Burns the shares. If step 3(or step 2) fails, a CriticalError is returned. In proce
ssSwapOutJobs, this error is caught. The code calls autoPauseVault and then executes
continue. This allows the loop to proceed or finish, committing the sdkCtx state changes
(the asset transfer) to the blockchain.

Impact
The vault is paused, but the funds are lost. If an admin later refunds the shares to fix the
failed withdrawal, the user ends up with both the assets and the shares. Additionally, if
vault is unpaused without manually burning shares that didn't complete, accounting(TVV
calculations) will be flawed.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/keeper/payout.go#L137-L157

70

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/69
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/payout.go#L137-L157
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/payout.go#L137-L157

Tool Used
Manual Review

Recommendation
Use sdkCtx.CacheContext() to wrap the execution of processSingleWithdrawal. This
ensures that if any part of the withdrawal fails, the entire transaction (including the
asset transfer) is rolled back. Only commit the cached context if the function returns nil.

Discussion
nullpointer0x00

Great suggestion on this one.

We were aware that an autopause here would leave the state messy and require manual
admin intervention to fix. However, your point about using CacheContext is a much
better approach. It handles the rollback automatically so we don't have to worry about
the state becoming inconsistent.

I am going to test the CacheContext implementation and add it to our milestone.

71

IssueL-15: ValidateInterestRateLimitsbypassesval-
idation when only one limit is set [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/74

Summary
The ValidateInterestRateLimits function in vault/keeper/vault.go returns early if either
minRateStr or maxRateStr is empty, preventing validation of the non-empty parameter.

Vulnerability Detail
The function uses an OR condition (||) in the early return check:

func (k Keeper) ValidateInterestRateLimits(minRateStr, maxRateStr string) error {
if minRateStr == "" || maxRateStr == "" { // @audit Returns if EITHER is empty

return nil
}

minRate, err := sdkmath.LegacyNewDecFromStr(minRateStr)
if err != nil {

return fmt.Errorf("invalid min interest rate: %w", err)
}
maxRate, err := sdkmath.LegacyNewDecFromStr(maxRateStr)
if err != nil {

return fmt.Errorf("invalid max interest rate: %w", err)
}

if minRate.GT(maxRate) {
return fmt.Errorf("minimum interest rate %s cannot be greater than maximum

interest rate %s", minRate, maxRate)↪→

}

return nil
}

Problem Cases:

1. Only minimum rate set:

ValidateInterestRateLimits("invalid-decimal", "")
// Returns nil without validating "invalid-decimal"

2. Only maximum rate set:

72

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/74

ValidateInterestRateLimits("", "not-a-number")
// Returns nil without validating "not-a-number"

3. Both set with invalid values: ValidateInterestRateLimits("abc", "xyz")

Impact
Malformed decimal strings can be set as MinInterestRate or MaxInterestRate.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L320

Tool Used
Manual Review

Recommendation
Validate each rate string independently before checking the min < max relationship.

Discussion
nullpointer0x00

This one is a good find and an easy fix. Will add it to our next release.

defsec

Fixed with https://github.com/ProvLabs/vault/pull/141/files

73

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L320
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L320
https://github.com/ProvLabs/vault/pull/141/files

IssueL-16: Queryendpoints ignoreerror returns from
GetVault [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/75

Summary
The Vaults query endpoint in query_server.go ignores the error return from GetVault,
allowing invalid or corrupted vault data to be included in query responses.

Vulnerability Detail

func (k queryServer) Vaults(goCtx context.Context, req *types.QueryVaultsRequest)
(*types.QueryVaultsResponse, error) {↪→

// ...
_, pageRes, err := query.CollectionFilteredPaginate(

ctx,
k.Keeper.Vaults,
req.Pagination,
func(key sdk.AccAddress, _ []byte) (include bool, err error) {

vault, _ := k.GetVault(ctx, key) // @audit Error ignored
vaults = append(vaults, *vault)
return true, nil

},
// ...

)
}

The error from GetVault is explicitly ignored with _.

Impact
Partial vault data from failed validation might be exposed.

Code Snippet

vault, _ := k.GetVault(ctx, key) // Error ignored
vaults = append(vaults, *vault) // Dereferences potentially nil vault

74

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/75

Tool Used
Manual Review

Recommendation
Consider adding error validation.

Discussion
nullpointer0x00

Adding to next release. Thanks!

75

Issue L-17: No user-initiated cancellation for pend-
ing withdrawals [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/81

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
Users cannot cancel pending withdrawal requests leading to forced exposure during
cooldown period.

Vulnerability Detail
The vault module provides no mechanism for users to cancel their pending withdrawal
requests after calling SwapOut. Users are forced to wait for the cooldown period with their
shares escrowed, exposing them to unwanted NAV fluctuations and vault state changes.

Current Flow:

1. User calls SwapOut.

2. Shares immediately escrowed from user to vault address.

3. Request queued with payoutTime = now + WithdrawalDelaySeconds .

4. User must wait for cooldown (typically days).

5. No way to cancel and get shares back.

Impact
User locked in during cooldown.

Code Snippet

func (k *Keeper) SwapOut(ctx sdk.Context, vaultAddr, owner sdk.AccAddress, shares
sdk.Coin, redeemDenom string) (uint64, error) {↪→

// ... validation ...

// Escrow shares immediately
if err := k.BankKeeper.SendCoins(ctx, owner, vault.GetAddress(),

sdk.NewCoins(shares)); err != nil {↪→

return 0, fmt.Errorf("failed to escrow shares: %w", err)
}

76

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/81

payoutTime := ctx.BlockTime().Unix() + int64(vault.WithdrawalDelaySeconds)
pendingReq := types.PendingSwapOut{

Owner: owner.String(),
VaultAddress: vaultAddr.String(),
RedeemDenom: redeemDenom,
Shares: shares,

}
requestID, err := k.PendingSwapOutQueue.Enqueue(ctx, payoutTime, &pendingReq)
// ...
return requestID, nil

}

Tool Used
Manual Review

Recommendation
Consider adding user-initiated cancellation.

Discussion
nullpointer0x00

We have discussed this as a future feature and all the implications.

77

IssueL-18: MissingCosmosSDK invariants [ACKNOWL-
EDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/82

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The vault module does not implement RegisterInvariants, which is a standard Cosmos
SDK pattern for modules to register invariant checks that can be run by the crisis module.
This means there are no automated checks to detect state inconsistencies, accounting
errors, or protocol violations that could occur due to bugs, attacks, or edge cases.

Vulnerability Detail
Cosmos SDK modules typically implement the HasInvariants interface and register
invariant checks via RegisterInvariants. These invariants are periodically checked by
the crisis module to detect state corruption or protocol violations. The vault module
does not implement this pattern.

The AppModule in vault/module.go does not implement RegisterInvariants:

// vault/module.go
type AppModule struct {

AppModuleBasic
keeper *keeper.Keeper
addressCodec address.Codec
markerKeeper types.MarkerKeeper
bankKeeper types.BankKeeper

}

// @audit No RegisterInvariants method
// @audit Does not implement module.HasInvariants

Impact
1. Share Supply Consistency:

• vault.TotalShares should match or exceed the marker's actual supply

• Marker supply should not exceed TotalShares (bridge capacity check)

• Escrowed shares in vault account should be accounted for

2. Share Backing Invariant:

78

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/82

• Total Vault Value (TVV) should be sufficient to back all outstanding shares

• Principal marker balances should match or exceed the value represented by
shares

• NAV per share should be positive and consistent

3. Queue Consistency:

• All entries in PendingSwapOutQueue should reference valid vaults

• Escrowed shares in vault account should match pending withdrawal requests

• Queue timestamps should be valid and ordered

4. Interest Rate Bounds:

• CurrentInterestRate should respect MinInterestRate and MaxInterestRate
bounds

• Interest rate strings should be valid decimal numbers

• Rate changes should be within configured limits

Code Snippet

Tool Used
Manual Review

Recommendation
Consider implementing invariants on the system.

Discussion
nullpointer0x00

We will add in follow up release. Thanks for this one!

79

Issue L-19: MaxSwapOutBatchSize should be gover-
nance parameter [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/85

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The MaxSwapOutBatchSize constant is hardcoded to 100 in the vault module's code. This
prevents the protocol from adjusting the batch processing limit without a code upgrade,
making it difficult to respond to network conditions, queue sizes, or discovered
vulnerabilities. The value should be configurable via governance parameters to allow
dynamic adjustment.

Vulnerability Detail
The MaxSwapOutBatchSize constant is defined as a hardcoded value in vault/keeper/abci.
go:

const (
// MaxSwapOutBatchSize is the maximum number of pending swap-out requests
// to process in a single EndBlocker invocation. This prevents a large queue
// from consuming excessive block time and memory. This is a temporary value
// and we will need to do more analysis on a proper batch size.
// See https://github.com/ProvLabs/vault/issues/75.
MaxSwapOutBatchSize = 100

)

This constant is used in the EndBlocker to limit how many withdrawal requests are
processed per block:

func (k *Keeper) EndBlocker(ctx context.Context) error {
if err := k.processPendingSwapOuts(ctx, MaxSwapOutBatchSize); err != nil {

return err
}
// ...

}

Impact
The hardcoded batch size limits the protocol's ability to adapt to changing conditions.

80

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/85

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/mai
n/vault/keeper/abci.go#L13

Tool Used
Manual Review

Recommendation
Implement MaxSwapOutBatchSize as a governance parameter.

Discussion
nullpointer0x00

This was something we were considering in the next iteration. Good call out.

81

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/vault/keeper/abci.go#L13
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/vault/keeper/abci.go#L13

IssueL-20: Systematicyield lossdueto interest trun-
cation on short intervals. [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/86

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The vault interest calculation logic truncates the accrued interest to the nearest integer
at every reconciliation step. If reconciliation occurs frequently (e.g., every few seconds
due to high user activity) or if the principal/rate combination results in less than 1 unit of
interest per interval, the vault generates zero yield. While this can be exploited by an
attacker performing a ”Dusting Attack,” the primary risk is that a naturally active vault
will systematically underpay interest, effectively erasing the vault's obligations to
shareholders.

Vulnerability Detail
The core issue lies in the CalculateInterestEarned function, which computes interest
using high-precision decimals but returns the result using interestAmountDec.TruncateIn
t(). This truncation discards any fractional interest (dust) less than 1 unit.

When reconcileVaultInterest is triggered, which happens automatically during public
operations like SwapIn and SwapOut, it calculates interest for the elapsed time since the
last update and then resets the PeriodStart timestamp. If the elapsed time is short (e.g.,
~6 seconds), the accrued interest is often less than 1 integer unit (e.g., 0.95 units). The
truncation logic rounds this down to 0. The system then advances the PeriodStart
timestamp, effectively marking that time period as ”paid” despite 0 interest being
distributed. If a vault experiences frequent interaction, this truncation happens
repeatedly. The fractional interest that should have accumulated over time is instead
discarded at every step, resulting in a total yield of 0 over long durations.

This behavior is confirmed by the TestCumulativeTruncationLoss test case given below
(running it in interest_test.go). The test simulates interest calculation over 10,000 blocks
(6 seconds each) for a principal of 100,000,000 units at 5% APY. When calculated
iteratively to simulate per-block updates, the total interest returned is 0. However, when
calculated in bulk to simulate a single update over the same total duration, the result is
9513 units of interest.

func TestCumulativeTruncationLoss(t *testing.T) {
denom := "uatom"
// Principal: 100 tokens (100,000,000 units)
principal := sdk.NewCoin(denom, sdkmath.NewInt(100_000_000))
rate := "0.05" // 5% APY

82

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/86

blockTime := int64(6) // 6 seconds per block
iterations := 10000 // Simulate 10,000 blocks (approx 16 hours)

// 1. Calculate iteratively (simulating per-block reconciliation)
// This mimics the vault state updating every block, truncating fractions each

time.↪→

sumIterative := sdkmath.ZeroInt()
for i := 0; i < iterations; i++ {

interestAmt, err := interest.CalculateInterestEarned(principal, rate,
blockTime)↪→

require.NoError(t, err)
sumIterative = sumIterative.Add(interestAmt)

}

// 2. Calculate bulk (simulating a single reconciliation after the total time)
// This represents the mathematical ideal if precision were preserved.
totalTime := blockTime * int64(iterations)
sumBulk, err := interest.CalculateInterestEarned(principal, rate, totalTime)
require.NoError(t, err)

t.Logf("Principal: %s", principal)
t.Logf("Rate: %s", rate)
t.Logf("Total Duration: %d seconds", totalTime)
t.Logf("Iterative Sum (Actual Yield): %s", sumIterative)
t.Logf("Bulk Sum (Expected Yield): %s", sumBulk)

// Assertion: The bulk calculation should yield significantly more than the
iterative one.↪→

// In this specific scenario, the iterative sum will be exactly 0 due to
truncation.↪→

require.True(t, sumBulk.GT(sumIterative), "Iterative calculation lost yield due
to truncation")↪→

}

Impact
Shareholders lose 100% of the yield if the vault is highly active. The vault's internal
accounting deviates significantly from the expected compounding curve, leading to a
permanent loss of value for depositors.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/interest/interest.go#L36-L66

83

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/interest/interest.go#L36-L66
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/interest/interest.go#L36-L66

Tool Used
Manual Review

Recommendation
Implement a dust accumulator in the vault state to track fractional interest that would
otherwise be lost during truncation. When calculating interest for a period, store the full
high-precision decimal result. Separate the integer portion for the immediate payout
and add the remaining fractional part to a persistent InterestDust field in the VaultAcco
unt. In subsequent reconciliations, add this stored dust to the newly calculated interest
before performing the truncation step. This ensures that small fractional accruals
eventually sum up to whole units and are paid out rather than being discarded.

Discussion
nullpointer0x00

This is a good point. I will mark this as something to implement for next release.

nullpointer0x00

After discussing the with the team, the test case does confirmed that cumulative
truncation of fractional interest can technically lead to a 100% loss of yield for highly
active vaults, for our current vault use cases and token precision ($10^-6 YLDS = USD)
show the actual monetary loss is too minimal (approx $0.00000095 per block) to warrant
implementing a dust accumulator for this next release.

84

IssueL-21: MustAccAddressFromBech32usageonstate
data [RESOLVED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/91

Summary
The vault module uses MustAccAddressFromBech32 to parse bech32 addresses from state
data in critical execution paths, particularly in processSingleWithdrawal and refundWithd
rawal.

Vulnerability Detail
The MustAccAddressFromBech32 function is designed to be used only when the input is
guaranteed to be valid (e.g., from validated user input or constants).

These functions are called in critical paths:

• processSingleWithdrawal is called from EndBlocker to process withdrawals.

• refundWithdrawal is called when withdrawals fail.

• ExpeditePendingSwapOut is called by admins to expedite withdrawals.

Impact
MustAccAddressFromBech32 can panic whenever there is an error.

Code Snippet
processSingleWithdrawal (vault/keeper/payout.go):

func (k *Keeper) processSingleWithdrawal(ctx sdk.Context, id uint64, req
types.PendingSwapOut, vault types.VaultAccount) error {↪→

vaultAddr := sdk.MustAccAddressFromBech32(req.VaultAddress)
ownerAddr := sdk.MustAccAddressFromBech32(req.Owner)

}

refundWithdrawal (vault/keeper/payout.go):

func (k *Keeper) refundWithdrawal(ctx sdk.Context, id uint64, req
types.PendingSwapOut, reason string) error {↪→

vaultAddr := sdk.MustAccAddressFromBech32(req.VaultAddress)
ownerAddr := sdk.MustAccAddressFromBech32(req.Owner)

85

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/91

}

ExpeditePendingSwapOut (vault/keeper/msg_server.go:436):

vaultAddr := sdk.MustAccAddressFromBech32(swapOut.VaultAddress)
// @audit No error handling if address is invalid

Tool Used
Manual Review

Recommendation
Replace MustAccAddressFromBech32 with AccAddressFromBech32 and add proper error
handling.

Discussion
nullpointer0x00

This is good input and easy fix. Currently, I believe all paths to these have already
validated the address at this point, so they shouldn't panic. However, I will fix this next
release.

defsec

Fixed with https://github.com/ProvLabs/vault/pull/152

86

https://github.com/ProvLabs/vault/pull/152

Issue L-22: Lack of decimal normalization in cross-
chain transfers [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/92

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The contract transfers raw token amounts between the user and the vault during
cross-chain transfers without performing any decimal normalization. If the external
chain uses a different decimal precision, such as 18 decimals USDC on BNB Chain versus
6 decimals on Provenance, relying on raw amounts will lead to significant value
discrepancies unless handled entirely by off-chain relayers.

Vulnerability Detail
The swap_in function accepts a coin amount and forwards it directly to the vault, while b
urn_swap_in_receipt burns a specific raw amount of shares to trigger a cross-chain
release. On chains where the decimal precision of USDC differs from Provenance
Blockchain, such as those using 18 decimals versus the standard 6, relying on raw
amounts causes value mismatches. For example, transferring 1 unit from an 18-decimal
chain could be interpreted as 1 trillion units on a 6-decimal chain if the raw integer value
is preserved without scaling.

Impact
This relies on the correctness of off-chain infrastructure. Failure to normalize decimals in
the relayer or destination contract will result in massive inflation or loss of funds.

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d9
49a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L195-L223

Tool Used
Manual Review

87

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/92
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L195-L223
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/6d949a344913469816bbcd75e1e05c557364bf4b/vault/keeper/vault.go#L195-L223

Recommendation
Ensure that the off-chain infrastructure or the smart contracts on the counterparty
chain strictly enforce decimal normalization to maintain value parity during cross-chain
transfers.

Discussion
scirner22

Acknowledged. The off chain manager currently normalizes all coins to 18 decimals
internally and converts them back to the per chain decimal representation.

As added protection I'll brainstorm some contract layer checks on top of that. For
instance maybe the deposit and withdraw evm functions can take the decimal value
and it can be checked against the erc20 decimal. That would prove the caller is explicitly
stating the correct decimal precision, although doesn't strictly mean the value they are
sending in is representative of the decimal value.

88

Issue L-23: InitGenesis calls SetVaultLookup twice
for same vault [ACKNOWLEDGED]
Source:
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/93

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The InitGenesis function calls SetVaultLookup twice for the same vault address: once
when processing vaults from GetAllAccounts and again when processing vaults from genS
tate.Vaults. While this doesn't cause an error, it's inefficient and could mask
inconsistencies if the vault data differs between the two sources.

Vulnerability Detail
The InitGenesis function processes vaults in two separate loops. The first loop iterates
through GetAllAccounts and calls SetVaultLookup for each vault account found. The
second loop iterates through genState.Vaults and also calls SetVaultLookup for each
vault.

If a vault exists in both GetAllAccounts (from x/auth state) and genState.Vaults (from
genesis JSON), SetVaultLookup will be called twice for the same vault address. While this
doesn't cause an error since it just overwrites the same empty byte array, it's inefficient.

The SetVaultLookup function doesn't validate that the vault being stored matches any
existing vault at that address. If there's a mismatch between the vault in GetAllAccounts
and the vault in genState.Vaults (e.g., different share denom, admin, or other fields), the
second call would silently overwrite the lookup entry without detecting the
inconsistency.

Impact
Duplicate SetVaultLookup calls .

Code Snippet
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/mai
n/vault/keeper/genesis.go#L27

Tool Used
Manual Review

89

https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/issues/93
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/vault/keeper/genesis.go#L27
https://github.com/sherlock-audit/2025-11-provlabs-nu-blockchain-nov-20th/blob/main/vault/keeper/genesis.go#L27

Recommendation
Skip calling SetVaultLookup in the second loop if the vault already exists in the lookup.

Discussion
nullpointer0x00

Adding this to next milestone.

90

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

91

	Introduction
	Scope
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue H-1: TokenFactory transfer/allowance functions are non-functional [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-1: Missing access control on factory contract creation functions [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue M-2: No mechanism to recover accumulated dust [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-3: AML signature lacks chain id binding [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-4: Griefing attack via residual dust and incorrect initial mint condition [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-5: Unpausing vault does not re-enable interest accrual period [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-6: Critical logic error in _doDeposit allows infinite bridge minting via self-transfer [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-7: Genesis import missing PayoutVerificationSet restoration [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-8: autoPauseVault sets zero PausedBalance due to circular dependency [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-9: handleVaultInterestTimeouts dequeues timeout but does not re-enqueue on failure [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-10: Missing slippage protection in swap and bridge operations [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-11: Withdrawal queue griefing via batch limit [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue M-12: NAV staleness during cooldown [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-1: Use Ownable2Step instead of Ownable for factory contracts [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue L-2: Contract has no admin transfer mechanism [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue L-3: CustomToken constructor contains redundant zero amount mint [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-4: Receipt ID collision risk [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-5: Withdraw function actually deposits tokens [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-6: Vault state changes bypass validation via direct AuthKeeper.SetAccount [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-7: Withdrawal contract grants excessive admin privileges to burnUser [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-8: Missing Defensive Allowlist Check in TVV Calculation [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-9: Payment Denom NAV staleness [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Tool Used
	Recommendation
	Discussion

	Issue L-10: Contracts do not account for fee-on-transfer tokens [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-11: AutoCLI positional arguments order mismatch with proto field definitions [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-12: Zero assets with non-zero shares allows share inflation [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-13: Incomplete zero checks in UnitPriceFraction [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-14: Lack of atomicity in withdrawal processing leads to potential double spending. [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-15: ValidateInterestRateLimits bypasses validation when only one limit is set [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-16: Query endpoints ignore error returns from GetVault [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-17: No user-initiated cancellation for pending withdrawals [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-18: Missing Cosmos SDK invariants [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-19: MaxSwapOutBatchSize should be governance parameter [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-20: Systematic yield loss due to interest truncation on short intervals. [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-21: MustAccAddressFromBech32 usage on state data [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-22: Lack of decimal normalization in cross-chain transfers [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-23: InitGenesis calls SetVaultLookup twice for same vault [ACKNOWLEDGED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Disclaimers

